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Decay of Correlations and Dispersing Billiards
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We give a rigorous proof of exponential decay of correlations for all major
classes of planar dispersing billiards: periodic Lorentz gases with and without
horizon and dispersing billiard tables with corner points.
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1. INTRODUCTION

It was noted in the eighties that there was a seemingly fundamental
difference between classical hyperbolic diffeomorphisms (Anosov and
Axiom A) and dispersing billiards, which included periodic Lorentz gases.
The latter are strongly hyperbolic and ergodic but highly nonlinear and
contain singularities. The growth of unstable manifolds in billiards is
spoiled by heavy distorsions, cutting and folding by singularities. It was
then assumed that the basic statistical properties of dispersing billiards
must be somewhat weaker than those of Axiom A systems. Mainly, the
correlations might decay more slowly, i.e., subexponentially.

L. A. Bunimovich and Ya. G. Sinai constructed Markov partitions for
Lorentz gases and proved that the correlations were bounded by a
stretched exponential function, exp(&an#) with some a>0 and # # (0, 1),
cf. ref. 3. They conjectured that this function was the true asymptotics of
correlations.

This conjecture was repeatedly tested numerically and often the data
seemed to be in perfect agreement with it.(6, 2) Moreover, some estimates of
# (e.g., 0.42, 0.71, 0.86) were found for particular billiard tables.
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In early nineties the situation turned around. For certain smooth
hyperbolic maps with singularities the correlations were proved to decay
exponentially.(7, 12) Those did not cover billiards, but at least suggested that
singularities did not necessarily slow down correlations. Next, more exten-
sive numerical experiments showed that the correlation function looked
more like exponential at long times.(10) The issue then became very con-
troversial.

L.-S. Young partially solved the controversy by proving that correla-
tions decayed exponentially for Lorentz gases with finite horizon.(17) She
also developed a powerful machinery for the study of correlations in
dynamical systems.

This paper is to settle the controversy completely. We prove here that
correlations decay exponentially in all major classes of planar dispersing
billiards. Our proofs are based on a general theorem on correlations that
presumably works for other physical models, such as Lorentz gases in
external fields and high dimensions.

The paper is organized as follows. We state the general theorem in
Section 2 and prove it in Sections 3�5. The billiard models are covered in
Sections 6�9. The reader can skip the proofs and go to billiards after
Section 2. Complete proofs are presented to help settle the persisting
controversy of the issue.

2. A GENERAL THEOREM ON CORRELATIONS

In Sections 2�5 we work with abstract smooth hyperbolic maps
T: M � M with singularities, which means the following.

Let M be an open subset in a d-dimensional C� Riemannian
manifold, such that M� is compact (the sets M and M� are not necessarily
connected), and let 1/M� be a closed subset. We consider a map
T: M"1 � M, which is a C2 diffeomorphism of M"1 onto its image.

The set 1 will be referred to as the singularity set for T. For n�1
denote by

1 (n)=1 _ T &11 _ } } } _ T &n+11 (2.1)

the singularity set for T n. Define

M+=[x # M : T nx � 1, n�0], M&= ,
n>0

T n(M"1 (n))

and

M0= ,
n�0

T n(M+)=M + & M&
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The sets M+ and M& consist, respectively, of points were all the future
and past iterations of T are defined, and M0 is the set of points where
all the iterations of T are defined. For any $>0 denote by U$ the
$-neighborhood of the closed set 1 _ �M.

Notation. We denote by \ the Riemannian metric in M and by m
the Lebesgue measure (volume) in M. For any submanifold W/M we
denote by \W the metric on W induced by the Riemannian metric in M, by
mW the Lebesgue measure on W generated by \W , and by diam W the
diameter of W in the \W metric.

Hyperbolicity. We assume that T is fully and uniformly hyper-
bolic, i.e., there exist two families of cones C u

x and C s
x in the tangent spaces

TxM, x # M� , such that DT(C u
x)/C u

Tx and DT(C s
x)#C s

Tx whenever DT
exists, and

|DT(v)|�4|v| \v # C u
x and |DT &1(v)|�4|v| \v # C s

x

with some constant 4>1. These families of cones are continuous on M� ,
their axes have the same dimensions across the entire M� , and the angles
between C u

x and C s
x are bound away from zero. Denote by du and ds the

dimensions of the axes of C u
x and C s

x , respectively. The full hyperbolicity
here means that du+ds=dim M.

For any x # M+ and y # M& we set

E s
x= ,

n�0

DT &n(C s
Tnx) and E u

y= ,
n�0

DT n(C u
T&ny)

respectively. It is standard, see, e.g., ref. 14, that the subspaces E s
x , E u

x are
DT-invariant, depend on x continuously, dim E u, s

x =du, s , and E s
x �E u

x=
TxM for x # M0.

As a consequence, there can be no zero Lyapunov exponents on M0.
The space E u

x is spanned by all vectors with positive Lyapunov exponents,
and E s

x by those with negative Lyapunov exponents.
We call a submanifold Wu/M a local unstable manifold (LUM), if

T &n is defined and smooth on Wu for all n�0, and \x, y # Wu we have
\(T &nx, T &ny) � 0 as n � � exponentially fast. Similarly, local stable
manifolds (LSM), W s, are defined. Note that dim Wu, s=du, s . We denote
by Wu(x), W s(x) local unstable and stable manifolds containing x, respec-
tively.

We primarily work with LUM's, and for brevity we will denote them
by just W, suppressing the superscript u. Denote by Ju(x)=|det(DT | E u

x)|
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the jacobian of the map T restricted to W(x) at x, i.e., the factor of the
volume expansion on the LUM W(x).

We assume the following standard properties of unstable manifolds:

Bounded Curvature. The sectional curvature of any LUM W is
uniformly bounded by a constant B�0.

Distorsion Bounds. Let x, y be in one connected component of
W"1 (n&1), denote it by V. Then

log `
n&1

i=0

Ju(T ix)
Ju(T iy)

�.(\T nV (T nx, T ny)) (2.2)

where .( } ) is some function, independent of W, such that .(s) � 0 as
s � 0.

Absolute Continuity. Let W1 , W2 be two sufficiently small
LUM's, such that any LSM W s intersects each of W1 and W2 in at most
one point. Let W$1=[x # W1 : W s(x) & W2 {<]. Then we define a map
h: W$1 � W2 by sliding along stable manifolds. This map is often called a
holonomy map. We assume that it is absolutely continuous with respect to
the Lebesgue measures mW1

and mW2
, and its jacobian (at any density

point of W$1) is bounded, i.e.,

1�C$�
mW2

(h(W$1))

mW1
(W$1)

�C$ (2.3)

with some C$=C$(T )>0.

Nonbranching of Unstable Manifolds.2 LUM's are locally
unique, i.e., for any two LUM's W1(x), W 2(x) we have W1(x) & B=(x)=
W2(x) & B=(x) for some =>0. Here B=(x) is the =-ball centered at x.
Furthermore, let [W 1

n] and [W 2
n] be two sequences of LUM's that have

a common limit point x # M� , i.e., \(x, W i
n) � 0 as n � � for i=1, 2.

Assume also that _=>0 such that \(x, �W i
n)>= for all n�1 and i=1, 2.

Then \H(W 1
n & B=(x), W 2

n & B=(x)) � 0 as n � �, where

\H(A, B)=max [sup
x # A

\(x, B), sup
y # B

\( y, A)]

is the Hausdorff distance between sets.
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u-SRB Measures. A unique probability measure &W , absolutely
continuous with respect to the Lebesgue measure mW , is defined on any
LUM W by the following equation:

\W (x)
\W ( y)

= lim
n � �

`
n

i=1

Ju(T &iy)
Ju(T &ix)

\x, y # W (2.4)

where \W (x)=d&W �dmW (x) is the density of &W with respect to mW . The
existence of the limit in (2.4) is guaranteed by (2.2). We call &W the u-SRB
measure on W. Observe that u-SRB measures are conditionally invariant
under T, i.e., for any submanifold W1 /TW, the measure T

*
&W | W1 (the

image of &W under T conditioned on W1) coincides with &W1
.

SRB Measure. We assume that the map T preserves an ergodic
Sinai�Bowen�Ruelle (SRB) measure +, i.e., there is an ergodic probability
measure + on M such that for +-a.e. x # M a LUM W(x) exists, and the
conditional measure on W(x) induced by + is absolutely continuous
with respect to mW(x) . In fact, that conditional measure coincides with the
u-SRB measure &W(x) .

$0-LUM's. Let $0>0. We call a LUM W a $0-LUM if diam W�$0 .
For an open subset V/W and x # V denote by V(x) the connected compo-
nent of V containing the point x. Let n�0. We call an open subset V/W
a ($0 , n)-subset if V & 1 (n)=< (i.e., the map T n is defined on V) and
diam T nV(x)�$0 for every x # V. Note that T nV is then a union of
$0 -LUM's. Define a function rV, n on V by

rV, n(x)=\T nV(x)(T nx, �T nV(x)) (2.5)

Hence, rV, n(x) is the radius of the largest open ball in T nV(x) centered at
T nx. In particular, rW, 0(x)=\W (x, �W).

Flatness and Uniformity of LUM's. We will only work with
$0 -LUM's for very small values of $0 . For such a $0 -LUM W the tangent
spaces Tx W are almost parallel at all points x # W. If n�1 and V/T nW
is another $0 -LUM, then T n

*
mW | V (the n th iterate of mW conditioned

on V) has an almost constant density with respect to mV , due to (2.2). The
u-SBR measure &W is almost uniform with respect to the Lebesgue measure
mW . The smaller $0 , the more accurate these approximations are,
uniformly in all $0 -LUM's W.
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We now turn to the key assumptions on the growth of unstable
manifolds that will ensure a fast decay of correlations.

Growth of Unstable Manifolds. We assume that there are
constants :0 # (0, 1) and ;0 , D0 , }, _, `>0 with the following property. For
any sufficiently small $0 , $>0 and any $0 -LUM W there is an open
($0 , 0)-subset V 0

$ /W & U$ and an open ($0 , 1)-subset V 1
$ /W"U$ (one of

these may be empty) such that mW (W"(V 0
$ _ V 1

$))=0 and \=>0

mW (rV 1
$ , 1<=)�:0 4 } mW (rW, 0<=�4)+=;0 $&1

0 mW (W) (2.6)

mW (rV 0
$ , 0<=)�D0 $&}mW (rW, 0<=) (2.7)

and

mW (V 0
$)�D0 mW (rW, 0<`$_) (2.8)

The meaning of the above assumptions is quite simple: they ensure that
TV 1

$ is big enough, V 0
$ is small enough, and the boundaries �V 1

$ and �V 0
$

are regular enough.

Remark. Note that the above assumptions only involve one iterate
of T. This is the main difference of our assumptions from those made in
ref. 17.

We now state our main result, followed by the necessary definitions.

Theorem 2.1. Let T satisfy the above assumptions. If the system
(T n, +) is ergodic for all n�1, then the map T has exponential decay of
correlations (EDC) and satisfies the central limit theorem (CLT) for
Ho� lder continuous functions on M.

The class of Ho� lder continuous functions H' , '>0, on M is defined
by

H'=[ f : M � R | _C>0 : | f (x)& f ( y)|�C\(x, y)', \x, y # M]

We say that (T, +) has exponential decay of correlations for Ho� lder con-
tinuous functions if \'>0 _#=#(') # (0, 1) such that \f, g # H' _C=
C( f, g)>0 such that

}|M
( f b T n) g d+&|

M
f d+ |

M
g d+ }�C# |n| \n # Z
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We say that (T, +) satisfies central limit theorem (CLT) for Ho� lder con-
tinuous functions if \'>0, f # H' , with � f d+=0, __f�0 such that

1

- n
:

n&1

i=0

f b T i w�
dist

N(0, _2
f )

Furthermore, _f=0 iff f =g b T& g for some g # L2(+).

3. FILTRATIONS OF UNSTABLE MANIFOLDS

Existence of LUMs and LSMs. For any =>0, let

M\
4, ==[x # M\ : \(T \nx, 1 _ �M)>=4&n \n�0]

and

M \
4 = .

=>0

M \
4, = M 0

4=M +
4 & M &

4

The following fact is standard:(14, 17) \x # M &
4, = there is a LUM Wu(x)

such that \(x, �Wu(x))�=. Similarly, \x # M +
4, = there is an LSM W s(x)

such that \(x, �W s(x))�=. For x # M &
4, = we denote by W u

=(x) the LUM
which is a =-ball centered at x in the \W=

u(x) metric, i.e., \W=
u(x)(x, y)==,

\y # �W u
=(x). Similarly, W s

=(x) is defined \x # M +
4 . We will call W s

=(x) and
Wu

= (x) stable and unstable disks of radius = through x, respectively.

Z-Function. Let W be a $0 -LUM, n�0, and V/W an open
($0 , n)-subset of W. We define the Z-function introduced in ref. 8 by

Z[W, V, n]=sup
=>0

mW (x # V : rV, n(x)<=)
= } mW (W)

(3.1)

The supremum here is not necessarily finite. It will be finite if the boundary
�T nV is regular enough. In particular, if �T nV is piecewise smooth (i.e.,
consists of a finite number of smooth compact submanifolds of dimension
�du&1), then Z[W, V, n]<�, see e.g., ref. 9. In the case mW (W"V)=0,
the value of Z[W, V, n] characterizes, in a certain way, the ``average size''
of the components of T nV��the larger they are the smaller Z[W, V, n]. In
particular, the value of Z[W, W, 0] characterizes the size of W in the
following way.
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Examples. Let W be a ball of radius r, then Z[W, W, 0]tr&1. Let
W be a cylinder whose base is a ball of radius r and height h>>r, then
again Z[W, W, 0]tr&1. Let W be a rectangular box with dimensions
l1_l2_ } } } _ldu

, then Z[W, W, 0]t1�min[l1 , ..., ldu
].

Notation. Let $max>0 be so small that : :=:0e6.($max)<1. Denote
also ; :=;0 e6.($max) and D :=D0e6.($max). We will always assume that
$0<$max . Next, put ;� =2;�(1&:), and a=&(ln :)&1 and b=
max[0, &ln($0(1&:)�;)�ln :]. We also put $1=$0 �(2;� ).

Convention of $s. We will define some small parameters $i , i�1,
so that each $ i will be a certain function of $i&1 , like the one specified
above. In this way we can vary all our $s together preserving the relations
between them.

$-Filtration. Let $0 , $>0 and W be a $0 -LUM. Two sequences of
open subsets W=W 1

0 #W 1
1 #W 1

2 # } } } and W 0
n /W 1

n"W 1
n+1 , n�0, are

said to make a $& filtration of W, denoted by [W 1
n , W 0

n] if3 \n�0

(a) the set W 1
n and W 0

n are ($0 , n)-subsets of W;

(b) mW (W 1
n"(W 1

n+1 _ W 0
n))=0.

(c) T nW 1
n+1 & U$4&n=< and T nW 0

n /U$4&n .

We put W 1
�=�n�0 W 1

n . Observe that W 1
� /M +

4, $ , so that a stable
disk W s

$(x) of radius $ exists at every point x # W 1
� .

Put also w1
n=mW (W 1

n)�mW (W) and w0
n=mW (W 0

n)�mW (W). Observe
that w1

n=1&w0
0& } } } &w0

n&1 and w1
nzw1

� :=mW (W 1
�)�mW (W) as n � �.

Theorem 3.1. Let W be a $0 -LUM and $>0. Then there is a
$-filtration ([W 1

n], [W 0
n]) of W such that

(i) \n�1 and \=>0 we have

mW (rW1
n , n<=)�(:4)n } mW (rW, 0<=�4n)

+=;$&1
0 (1+:+ } } } +:n&1) mW (W) (3.2)

Furthermore, \n�0 and \=>0

mW (rW0
n , n<=)�D $&}4}nmW (rW1

n , n<=) (3.3)
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and

mW (W 0
n)�DmW (rW1

n , n<`$_4&_n) (3.4)

(ii) we have \n�1

Z[W, W 1
n , n]�:nZ[W, W, 0]+;$&1

0 (1+:+ } } } +:n&1) (3.5)

(iii) for any n�0 we have Z[W, W 0
n , n]�D $&}4}n } Z[W, W 1

n , n];

(iv) for any n�0 we have w0
n�D`$_4&_n } Z[W, W 1

n , n].

Proof. The proof of (3.2)�(3.4) goes by induction on n. The bound
(3.2) for n=1 and (3.3)�(3.4) for n=0 follow from our assumptions
(2.6)�(2.8), respectively, after we set W 1

1 :=V 1
$ and W 0

0 :=V 0
$ , since :0<:,

;0<;, and D0<D. Assume now (3.2) for some n�1. Denote by Wn, j ,
j�1, all the connected components of W 1

n . Each W$n, j :=T nWn, j is a
$0 -LUM. So, there are two disjoint open ($0 , 1)-subsets V 0

n, j /W$n, j &

U$4&n and V 1
n, j /W$n, j"U$4&n such that mW$n, j

(W$n, j"(V 0
n, j _ V 1

n, j))=0
and \=>0

mW$n, j
(rV1

n , j , 1<=)�:0 4 } mW$n, j
(rW$n, j , 0<=�4)+=;0$&1

0 mW$n, j
(W$n, j)

mW$n, j
(rV0

n , j , 0<=)�D0 $&}4}nmW$n, j
(rW$n, j , 0<=)

and

mW$n, j
(V 0

n, j)�D0mW$n, j
(rW$n, j , 0<`$_4&_n)

according to (2.6)�(2.8). Using the distorsion bound (2.2) and our defini-
tion of :, ;, D yields

mWn, j
(rU1

n , j , n+1<=)�:4 } mWn, j
(rWn, j , n<=�4)+=;$&1

0 mWn, j
(Wn, j)

mWn, j
(rU 0

n , j , n<=)�D$&}4}nmWn, j
(rWn, j , n<=)

and

mWn, j
(U 0

n, j)�DmWn, j
(rWn, j , n<`$_4&_n)
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where U 1
n, j :=T &nV 1

n, j and U 0
n, j :=T &nV 0

n, j . Summing up over j gives

mW (rW 1
n+1, n+1<=)�:4 } mW (rW1

n , n<=�4)+=;$&1
0 mW (W 1

n)

mW (rW 0
n , n<=)�D$&}4}nmW (rW 1

n , n<=)

and

mW (W 0
n)�DmW (rW1

n , n<`$_4&_n)

where W 1
n+1 :=�j U 1

n, j and W 0
n :=� j U 0

n, j . The bounds (3.3) and (3.4)
for the current value of n are proved. A direct use of (3.2) with = replaced
by =�4, along with the obvious bound mW (W 1

n)�mW (W), gives (3.2) with
n replaced by n+1. This completes the inductive proof of (3.2). Next, the
parts (ii)�(iv) follow directly from (3.2)�(3.4), respectively, upon dividing
by mW (W) and using (2.5). K

Remark. The proofs of the above theorem would go through even
for slightly smaller values of :, ;, D: :=:0e2.($0), ;=;0e2.($0), and
D=D0e2.($0). Our choice of bigger than necessary values for :, ;, D will,
however, allow us to extend the above theorem to absolutely continuous
measures on W whose density with respect to the Lebesgue measure mW is
not constant but close enough to a constant. Precisely, if m~ W is a measure
on W with density \~ (x)=dm~ W �dmW (x), then we can replace mW with m~ W

in (3.1) and in the above theorem provided \~ (x)�\~ ( y)�e2.($0), \x, y # W.
In particular, this trick works for the u-URB measure m~ W=&W .

Corollary 3.2. Let Z� W=max[Z[W, W, 0], ;� �$0]. Then

(i) Z[W, W 1
n , n]�Z� W and Z[W, W 0

n , n]�D$&}4}nZ� W for all
n�0;

(ii) Z[W, W 1
n , n]�@� �$0=(2$1)&1 for all n�a ln Z[W, W, 0]+b;

(iii) w0
n�D`$_4&_nZ� W for all n�0;

(iv) w1
n�1&D`$_Z� W �(1&4&_) for all n�1;

(v) mW (W 1
�)�mW (W) } [1&D`$_Z� W �(1&4&_)]

Modified Z-Function. The values Z[W, W 1
n , n] and Z[W, W 0

n , n]
do not characterize the average size of the components of T nW 1

n or T nW 0
n ,

respectively, since W 1
n and W 0

n are not subsets of full measure in W. To
characterize the average sizes of the components of any ($0 , n)-subset
V/W we will also use the quantity

Z[V, n] :=sup
=>0

mW (x # V: rV, n(x)<=)
= } mW (V)

=Z[W, V, n]_
mW (W)
mW (V)

(3.6)
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This value only depends on V and n, but not on W. Accordingly, the values
of

Z[W 1
n , n]=Z[W, W 1

n , n]�w1
n and Z[W 0

n , n]=Z[W, W 0
n , n]�w0

n

characterize the average size of the components of T nW 1
n or T nW 0

n , respec-
tively.

Special Case. In our further arguments, the set W 1
� will be often

very dense in W with w1
�>0.9. We call this a special case, and

Corollary 3.2 then implies that for all n�a ln Z[W, W, 0]+b we have
Z[W 1

n , n]�0.6�$1 . In this case we say that the components of T nW 1
n are

large enough, on the average.

Remark. The values of Z[W, Wn , n], Z[W, W 1
n , n], Z[W, W 0

n , n],
w1

n , and w0
n above will certainly not change if we replace the Lebesgue

measure mW by any measure proportional to it. It is also straightforward
that all the above results extend to finite or countable disjoint unions of
$0 -LUM's with finite measures, provided the measure is a linear combina-
tion of the Lebesgue measures on individual components. Precisely, let
W=�k W (k) be a countable union of pairwise disjoint $0 -LUM's and let
m̂W=�k ukmW(k) , with some uk>0, be a finite measure on W. Then
Z[W, V, n] is still defined by (3.1), with mW replaced by m̂W , for any set
V=�k V (k), where V (k) are some open ($0 , n)-subsets of W (k). The defini-
tion of $-filtration and the proof of Theorem 3.1 go through with only
minor obvious changes.

Final Remark. Let W$ be a $0 -LUM, k�1, and V$/W$ an open
($0 , k)-subset. Then W=T kV$ is a finite or countable union of $0 -LUM's.
The measure m~ W :=T k

V mW$ | W on W is almost uniform (proportional to
the Lebesgue measure mW) on each component of W. Actually, its density
differs from a constant by less than e2.($0), according to (2.2). Due to the
remark after Theorem 3.1, all the above results will then apply to (W, m~ W),
instead of (W, mW).

The following proposition generalizes the above special case. Its proof
goes like the proof of Proposition 4.4 in ref. 8, with obvious modifications.

Proposition 3.3. Let ([W 1
n], [W 0

n]) be a $-filtration of a $0 -LUM
W satisfying Theorem 3.1, such that w1

�= p>0. Then for all n�a1(ln Z[W,
W, 0]&ln p)+b1 we have mW (W 1

�)�mW (W 1
n)�0.9 and Z[W 1

n , n]�0.6�$1 ,
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i.e., the components of T nW 1
n will be large enough, on the average. Here a1=

a+(_ ln 4)&1 and b1 is another constant determined by :, ;, $0 , 4, `, D.

Final Remark (Part 2). The above proposition also applies to
any pair (W, m~ W) described in Final Remark before the proposition.
Likewise, some further results stated and proved for $0-LUM's W with
Lebesgue measures mW , will also apply to measures m~ W=T k

*
mT&kW on W

for any k�1.

4. RECTANGLES

Here we mostly repeat, in a brief manner, the constructions of ref. 8,
Section 5.

Rectangles and Subrectangles. A subset R/M0 is called a
rectangle if _=>0 such that for any x, y # R there is an LSM W s(x) and an
LUM Wu( y), both of diameter �=, that meet in exactly one point, which
also belongs in R. We denote that point by [x, y]=W s(x) & Wu( y).

A subrectangle R$/R is called a u-subrectangle if Wu(x) & R=
Wu(x) & R$ for all x # R$. Similarly, s-subrectangles are defined. We say
that a rectangle R$ u-crosses another rectangle R if R$ & R is a u-subrec-
tangle in R and an s-subrectangle in R$.

s-Shadowing and s-Distance. Let x # M and r # (0, $0). We
denote by Sr(x) any s-manifold that is a ball of radius r centered at x in
its own metric, \Sr (x) . By that we mean \Sr (x)(x, y)=r, \y # �Sr(x). We call
such Sr(x) an s-disk. In order to define s-disks also around points close
to �M we extend the cone families Cu and C s continuously beyond the
boundaries of M into the $0-neighborhood of M. Then s-disks Sr(x) exist
\x # M, \r # (0, $0).

Let W be a $0 -LUM, and x # M. Clearly, any s-disk S$0
(x) can meet

W in at most one point. We call

Hx(W)=[ y # W: y=S$0
(x) & W for some S$0

(x)]

the s-shadow of x on W.
We say that a point x # M is overshadowed by a LUM W if \S$0

(x)
we have S$0

(x) & W{<. We call

\s(x, W)= sup
S$0

(x)

\S$0
(x)(x, S$0

(x) & W)

the s-distance from x to W.
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Let W, W$ be two $0 -LUM's. We call

HW (W$)= .
x # W

Hx(W$)

the s-shadow of W on W$. We say that W$ overshadows W if it over-
shadows every point x # W. In this case we define

\s(W, W$)= sup
x # W

\s(x, W$)

the s-distance from W to W$.
We assume that $0 , and hence $1=$0 �(2;� ), are small enough, so that

A$1
=
def [x # M: the unstable disk W u

$1
(x) exists]{<

Let z # A$1
. Consider W(z) :=W u

$1�3(z), the ``central part'' of the exist-
ing unstable disk W u

$1
(z). It is a $0 -LUM, and a perfect ball in its own

metric. It is easy to compute that for a perfect ball W of radius $ in Rdu one
has Z[W, W, 0]=du �$. Since the manifolds W(z), z # A$1

, actually have
some (bounded) sectional curvature, Z[W(z), W(z), 0] might be larger
than 3du �$1 , but if $1 is small enough, we will have(8)

Z[W(z), W(z), 0]�4du �$1 (4.1)

for all z # A$1
.

Now let $2 be defined by

$_
2

_1

=
1&4&_

40 D`du
(4.2)

For any z # A$1
fix one $2 -filtration ([W 1

n(z)], [W 0
n(z)]) of W(z) satisfying

Theorem 3.1. Recall that \x # W 1
�(z) a stable disk W s

$2
(x) exists, cf. Sec-

tion 3. The following lemmas are consequences of (4.1), (4.2) and the parts
(ii), (v) of Corollary 3.2, see proofs in ref. 8.

Lemma 4.1. mW(z)(W 1
�(z))�0.9 } mW(z)(W(z)).

Lemma 4.2. \n�n$0 :=a ln(16du)+max[1, a ln[;$&1
0 �(1&:)]]

we have

(i) Z[W(z), W 1
n(z), n]<(2 $1)&1 and Z[W 1

n(z), n]<0.6�$1 ;

(ii) mW(z)(x # W 1
n(z): rW1

n (z), n(x)>$1)
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>0.4 } mW(z)(W 1
n(z))>0.4 } mW(z)(W 1

�(z)). In other words, (ii) means that
at least 400 of the points in T nW 1

n(z) (with respect to the measure
induced by mW(z)) lie a distance �$1 away from the boundaries of
T nW 1

n(z).

Remark. Let z # A$1
. For a moment, let W(z)=W u

=(z) be the stable
disk of any radius = # ($1 �3, $1). That disk W(z) is larger than W u

$1�3
(z), and

so (4.1) still holds. Therefore, the statements (i) and (ii) of the above
lemma hold as well. Furthermore, if, again for a moment, we decrease $2

thus making the ratio $_
2 �$1 even smaller than the one specified by (4.2),

then Lemma 4.1 will still hold, and then so will (i) and (ii) of Lemma 4.2.
Let $3<<$2 , to be specified later. The following proposition is proved

in ref. 8, Proposition 5.3.

Proposition 4.3. Let W be a $0 -LUM, and W$ another $0 -LUM
that overshadows W and \s(W, W$)�$3 . Let ([W 1

n], [W 0
n]) be a $2 -filtra-

tion of W. Then \n�1 and any connected component V of W 1
n there is a

connected domain V$/W$"1 (n) such that the $0 -LUM T nV$ overshadows
the $0-LUM T nV, and \s(T nV, T nV$)�$3 4&n.

Canonical Rectangles. For any z # A$1
we define a ``canonical''

rectangle R(z) as follows: y # R(z) iff y=W s
$2

(x) & W for some x # W 1
�(z)

and for some LUM W that overshadows W(z)=W u
$1�3(z), and such that

\s(W(z), W)�$3 . Observe that if $3�$2<c$, where c$>0 is determined by
the minimum angle between the stable and unstable cone families, then
every W that overshadows W(z) and is $3 -close to it in the above sense
will meet all stable disks W s

$2
(x), x # W 1

�(z). In that case R(z) will be a
rectangle, indeed. We fix $3 �$2 now as follows:

$3 �$2=min[c$, 1&4&1, 1�3] (4.3)

For any connected subdomain V/W(z) the set RV (z) :=[ y # R(z) :
W s( y) & V{<] is an s-subrectangle in R(z) ``based on V.'' For n�1, the
partition of W 1

n(z) into connected components, [V], induces a partition of
R(z) into s-subrectangles [RV (z)] that are based on those components. If
RV (z) is one of those s-subrectangles, then Proposition 4.3 implies that
T nRV (z) is a rectangle.

Lemma 4.4. For any $3>0 there is a $4>0 such that \z, z$ # A$1

such that \(z, z$)<$4 , the LUM W u
$1�2(z$) overshadows the LUM W(z)=

Wu
$1�3(z), and \s(W(z), W u

$1�2(z$))�$3 �2. Likewise, the LUM W u
$1

(z) over-
shadows the LUM W u

$1�2(z$), and \s(W u
$1�2(z$), W u

$1
(z))�$3 �2.
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Proof. It is enough to prove the first statement, the second one is
completely similar. We actually need to prove that \x # W(z) we have
\s(x, W u

$1�2(z$))�$3 �2. Assume that this is not the case, i.e., \$4>
0 _z, z$ # A$1

such that \(z, z$)<$4 and _x # W(z) such that \s(x, W u
$1�2(z$))

>$3 �2. We take a sequence $4=1�n, n�1, and the corresponding points
zn , z$n . Due to the compactness of M� , there is a subsequence nk such that
_z� :=limk znk

=limk z$nk
# M� . This clearly contradicts our assumption on

non-branching of unstable manifolds. K
Let n"0=min[n�1: 4n>2]. The following proposition is proved in

ref. 8, Proposition 5.3.

Proposition 4.5. Let z # A$1
and n�n"0 . Let V be a connected

component of W 1
n(z) and x # V such that rV, n(x)>$1 and \(T nx, z$)<$4

for some z$ # A$1
. Then the rectangle T nRV (z) u-crosses the rectangle R(z$),

i.e., T nRV (z) & R(z$) is (i) a u-subrectangle in R(z$) and (ii) an s-subrec-
tangle in T nRV (z).

5. RECTANGULAR STRUCTURE, RETURN TIMES,
AND TAIL BOUND

The constructions in this section follow the lines of ref. 8, Sections 6, 7.
Consider the SRB measure +. Clearly, if $0 is small enough, then

_z1 # A$1
such that +(R(z1))>0. We fix such a $0 and one such z1 # A$1

.
We then denote, for brevity, R=R(z1), W=W(z1), W 1

�=W 1
�(z1), etc.

Let Z=[z1 , z2 , ..., zp] be a finite $4 -dense subset of A$1
containing

the above point z1 . We call R=�i R(zi) the rectangular structure. It is a
finite union of rectangles that are likely to overlap and may not cover M
or even the support of +.

We will partition the set W 1
� into a countable collection of subsets

W1
�, k , k�0, such that for every k�1 there is an integer rk�1 such that

for the s-subrectangle Rk /R based on4 W 1
�, k the set T rk(Rk) will be a

u-subrectangle in some R(zi), zi # Z. This fact is considered as a proper
return (of Rk into R, under rk iterations of T). We define the return time
function r(x) on W 1

� by r(x)=rk for x # W 1
�, k , k�1, and r(x)=� for

x # W 1
�, 0 . We call the sets W 1

�, k for k�1 gaskets, cf. ref. 8, and W 1
�, 0 the

leftover set.
The following theorem immediately follows from Young, (17) see also

ref. 8, Section 6.
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Theorem 5.1. Assume that (T n, +) is ergodic for all n�1, and
+(R)>0. If

mW[r(x)>n]�C%n \n�1 (5.1)

for some C>0, 0 # (0, 1), then the system (T, +) satisfies EDC and CLT.
The construction of the partition W 1

�= _ k W 1
�, k consists of several

steps.

Initial Growth. First, we take n1=max[n$0 , n"0]. According to
Lemma 4.2, we have

(a) Z[W, W 1
n1

, n1]<(2 $1)&1 and Z[W 1
n1

, n1]<0.6�$1 , i.e., the
components of T n1W 1

n1
are large enough, on the average, and

(b) mW[x # W 1
n1

: rW1
n , n(x)�$1]�0.4mW (W 1

n1
), i.e., at least 400 of

the points in T n1W 1
n1

(with respect to the measure induced by mW) lie a
distance �$1 away from �T n1W 1

n1
.

(Recall that (b) actually follows from (a).) Let W g :=T n1W 1
n1

, and
m~ Wg=T

*
n1mW | W g the induced measure on W g. For every connected com-

ponent V/W g such that _xV # V: \V (xV , �V)�$1 we arbitrarily fix one
such point xV . Then xV # A$1

, and _zV # Z such that \(xV , zV)<$4 . We
fix one such zV , too. Then we label the set T &n1(V & R(zV)) as one of our
gaskets W 1

�, k , and we define rk=n1 on it. According to Proposition 4.5,
T rk(Rk) is a u-subrectangle in R(zV). As in ref. 8, we will call the set
V & R(zV) a gasket, too.

The next lemma follows from Lemmas 4.1 and 4.2, along with the
absolute continuity (2.3), see ref. 8.

Lemma 5.2. There is a q=q(T )>0 such that, independently of the
choice of the points xV and zV in the components V/W g, the just defined
gaskets W 1

�, k satisfy

mW \. W 1
�, k+�qmW (W 1

n1
)

In other words, a certain fraction (�q) of W g returns at the n1 th
iteration. This is the earliest return. The definition of further returns
requires more careful considerations to avoid possible overlaps of gaskets,
as it is explained in ref. 8.
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Capture. Every connected component V of W g where a point xV is
picked is now subdivided into two connected sets: V c :=W u

$1�2(xV) and
V f :=V"V c. The gasket V & R(zV) defined above lies wholly in V c, see
ref. 8. We say that V c is ``captured'' at the n1 -th iteration, and the set V f,
is ``free to move.'' Let W f=�V/Wg V f. The set W f contains no points of
the previously defined gaskets. For n�0, let W f, 1

n :=W f & T n1W 1
n1+n and

W f, 0
n :=int(W f, 1

n "W f, 1
n+1) for n�0. It is easy to see that the sets

[W f, 1
n , W f, 0

n ] make a ($24&n1)-filtration of the manifold W f and satisfies
Theorem 3.1.

It was shown in ref. 8, Section 6, that Z[W f, 1
n2

, n2]<0.6�$1 for
n2 :=[&ln 9.6�ln :]+1. In other words, it takes a fixed number of itera-
tions, n2 , to recover the lost average size of the freely moving manifold,
T nW f, 1

n , n�0, after the removal of the captured parts from W g. As soon
as this is done, i.e., at the iteration n=n2 , at least 400 of the image
T nW f, 1

n , will lie a distance �$1 from its boundary, just as in the claim (b)
above.

Next, we inductively repeat the above procedure of picking points xV ,
zV in the large components V of the freely moving manifold, defining new
gaskets V & R(zV), capturing disks containing the newly defined gaskets,
etc., see ref. 8. According to Lemma 5.2, the points of the freely moving
manifold are being captured at an exponential rate: at least a fraction q>0
of them is captured every n2 iterations of T. Let t0(x), x # W 1

� , be the num-
ber of iterations it takes to capture the image of the point x. Lemma 5.2
implies that

mW (t0(x)>n)�mW (W 1
�)�C0 %n

0 (5.2)

with %0=q1�n2<1 and some C0>0. In particular, t0(x)<� for a.e.
x # W 1

� .

Release. Next, we take care of the captured parts of the manifolds
T nW 1

n , n�1. Let Bc/T ncW 1
nc

be a connected part captured at the nc th
iteration of T, nc�n1 . Then Bc is a perfect ball of radius $1�2 in some
connected component of T ncW 1

nc
. It carries the measure m~ B c=T

*
ncmW | Bc.

The center xc of the disk Bc belongs in A$1
, and there is a point zc # Z such

that \(xc , zc)<$4 and such that the set Bc
R :=Bc & R(zc) makes a new

gasket at the moment of capture. Let Bc
� :=Bc & T ncW 1

� .
Denote Bc

n=Bc & T ncW 1
nc+n for n�0. Observe that

Z[Bc, Bc, 0]�4du �$1 and Z[Bc
n , n]<0.6�$1 \n�n$0 (5.3)
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according to the remark after Lemma 4.2. In other words, it takes n$0 itera-
tions of T to make the components of T nBc

n large enough, on the average.
In order to define a new gasket m any large component V of T nBc

n and
avoid possible overlaps with the image T nBc

R of the old gasket Bc
R , we will

make sure that V contains no points of T nBc
R . We define a ``point release

time,'' f (x), for points x # Bc
�"Bc

R . A point x will be released if T f (x)(x) is
sufficiently far from T f (x)Bc

R .
The definition of the release time is different for points of different

type:
Type I points are such that there is an LSM W s(x) meeting the

manifold W u
$1

(zc) in one point, call it h(x). Then h(x) � W 1
�(zc), otherwise

x would have belonged in Bc
R . Hence, either h(x) # W u

$1
(zc)"W u

$1�3(zc) or
h(x) # W 0

m(zc) for some m=m(x)�0. In the former case, we set m(x)=0
and =(x)=\(h(x), W u

$1�3(zc)). In the latter case we set =(x)=
\(T mh(x), �T mW 0

m(zc)). We now define the release time to be f (x)=
m(x)+log4 ($0 �=(x)), one formula for both cases.

Type II points have no local stable manifolds that extend to W u
$1

(zc).
Let x # Bc

� be such a point. According to the second statement in
Lemma 4.4, \s(x, W u

$1
(zc))�$3 �2. Hence, no local stable manifold W s(x)

contains a stable disk of radius $3 �2 around x. Therefore x � M +
4, $3�2 , see

Section 3. Let then m=m(x)=min[m$>0: \(T m$x, 1 _ �M)�$3 4&m$�2].
We claim that, on the component of T mBc

m containing T mx, there are no
points of T mBc

R in the ($2 4&m�2)-neighborhood of T mx. Indeed, if some
point y # T mBc

R were there, its LSM W s( y) would contain a point
y$ # T mW 1

�(zc), which is at distance �$3 4&m from y. Then \( y$, 1 _ �M)
�$2 4&m, since $3 �$2�1�3. This, however, contradicts the definition of
W1

�(zc), cf. Section 3. We now define the release time to be f (x)=2m(x)+
log4 (2 $0 �$2).

For any point x # Bc
�"Bc

R of either type and any n� f (x) the point
T nx should be at least the distance $0 from T nBc

R (measured along T nBc
n),

so that the component of T nBc
n containing T nx does not intersect T nBc

R at
all.

Therefore, we are free to define new gaskets and capture new disks on
any component V/T nBc

n that contains at least one released point, i.e.,
such that _x # T &nV: f (x)�n. We can only define a gasket, however, if
_x # V: \V (x, �V)�$1 , i.e., if V is large enough. Hence the next step.

Growth. To control the size of the components of T nBc
n , we collect,

for every n�0, the components V/T nBc
n released at the n-th iterations.

We say that V is released at the n-th iteration if at least one point of V is
released at this iteration, and none of the points of the component of T iBc

i
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that contains T &(n&i)V is released at the i-th iteration for any
i=0, ..., n&1. In that case we define another function, the ``component
release time,'' s(x)=n, on Bc

� & T &nV. Observe that s(x) is defined for
each x # Bc

�"Bc
R and s(x)� f (x).

For any s�0 let

W� =W� (s)= _ [V/T sBc
s : s(x)=s \x # Bc

� & T &sV] (5.4)

be the union of the components of T sBc
s released exactly at the s th itera-

tion. The manifold W� carries the measure m~ W� =T s
V m~ B c | W� . Consider open

sets W� 1
n :=W� & T sBc

s+n and W� 0
n :=int(W� 1

n"W� 1
n+1), n�0. It is easy to see

that they make a refined ($2 4&nc&s)-filtration of W� satisfying Theorem 3.1.
Denote then

p(s)=m~ W� (W� 1
�)�m~ W� (W� )=m~ W� (W� & T sBc

�)�m~ W� (W� ) (5.5)

If p(s)=0, we can simply disregard such a W� =W� (s). If p(s)>0, then
Proposition 3.3 applies to (W� , m~ W� ), according to Final Remark (Part 2).
Hence, _n�1 such that Z[W� 1

n , n]�0.6�$1 , i.e., the components of T nW� 1
n

are large enough, on the average. Let g be the minimum of such n's. We
call g the ``growth time'' and define another function, g(x)= g on
Bc

� & T &sW� (note that g(x) is a constant function on Bc
� & T &sW� , and it

only depends on s, so we will also write it as g(s)).
Consider now the manifold W� =T gW� 1

g and the measure m~ W� =
T g

V m~ W� | W� on it. Denote W� 1
�=T g(W� 1

�)=T g(W� & T sBc
�). According to

Proposition 3.3,

(c) m~ W� (W� 1
�)>0.9m~ W� (W� ), and

(d) Z[W� , W� , 0]�0.6�$1 , so that at least 400 of the points in W�
(with respect to the measure m~ W� ) lie a distance �$1 away from �W� .

Next, we define new gaskets and capture new disks on the large
components of W� , as we did to W g early in this section, and repeat the
procedure ``initial growth'' applying it to W� . Let t(x) be the ``capture time''
for x # W� 1

� , i.e., the minimum of t�0 such that T tx belongs in a captured
disk. The next lemma follows from the properties (c) and (d) of the
manifold W� just like Lemma 5.2 and (5.2) followed from the similar
properties of the manifold W g:

Lemma 5.3. We have m~ W� (t(x)>n)�m~ W� (W� 1
� fty)�C0 %n

0 with the
same constants as in (5.2).
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We emphasize that our construction of gaskets is inductive. For a.e.
point x # W 1

� , the cycle ``growth � capture � release � growth...'' repeats
until the point returns to R at some moment of capture. If it never returns,
we put it into the leftover set W 1

�, 0 and define r(x)=�. This concludes
our definition of the partition W 1

�=�k W 1
�, k and the return time r(x).

Exponential Tail Bound. We now turn to the proof of the
exponential tail bound (5.1). First, we show that the points of any captured
disk Bc are released at an exponential rate.

Lemma 5.4. There are C1>0 and %1 # (0, 1) such that for every
captured disk Bc we have m~ Bc( f (x)>n)�m~ B c(Bc)<C1%n

1 , \n�0.

Proof. We have defined the release time f (x) separately for the cap-
tured points of types I and II. First, we take care of points of type I. Recall
that for any point x of type I we defined a point h(x) # W u

$1
(zc) and two

numbers, m(x)�0 and =(x)>0. In view of the absolute continuity (2.3),
it is enough to estimate the measure mW u

$1
(zc)[h(x): f (x)>n]. Fix an

r # (0, (1+})&1). The measure of the set [h(x): m(x)>rn] is exponentially
small in n due to the part (iii) of Corollary 3.2 and (4.1). Next, for every
0�m�rn, we have

mWu
$1

(zc)[h(x): m(x)=m 6 =(x)<$0 4&(1&r) n]

�4 du D$0 $&1
1 $&}

2 4&(1&r&r}) n

based on the definition of Z[W, W 0
m , m], the part (i) of Corollary 3.2 and

(4.1). Due to our choice of r, the right hand side is exponentially small in
n, uniformly in m. Thus, the points of type I obey our claim.

For any point x of type II with m(x)=m, observe that T mx # U$34&m�2

and T kx � U$34&k�2 for all k=0, ..., m&1. Denote U=Bc and consider a
($3 �2)-filtration [U 1

n , U 0
n] of U satisfying Theorem 3.1. Then x # U 0

m , and
m~ B c(U 0

m) is exponentially small in m by the part (iii) of Corollary 3.2
and (5.3). K

The next lemma is proven in ref. 8, Lemma 7.2. It shows that the
released components in the images of any captured disk Bc grow at an
exponential rate:

Lemma 5.5. There are C2>0 and %2 # (0, 1) such that for every
captured disk Bc we have m~ Bc(s(x)+ g(x)>n)<C2%n

2 , \n�0.
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This rest of the proof of the exponential tail bound (5.1) goes by the
standard argument developed in ref. 7 (pp. 129�130) and used in ref. 17
(Sublemma 6 in Section 7), as it is explained in ref. 8, Section 7, see also an
alternative probabilistic argument there.

Theorem 2.1 is proved.

6. DISPERSING BILLIARDS: BACKGROUND

In the rest of the paper, we apply our main Theorem 2.1 to dispersing
billiards. This section contains basic properties of dispersing billiards.

Billiard Table. Let Q be the closure of a bounded connected
domain in R2 or on a 2-D torus T2 with a piecewise C3 smooth boundary
�Q. If the boundary �Q is strictly concave inward at every point of smooth-
ness, then the billiard system in Q is said to be dispersing, or a Sinai
billiard, see detailed studies in refs. 16, 11, and 5.

A particularly important class of dispersing billiards is that with
entirely smooth boundary (no corner points), i.e., Such that �Q is a finite
disjoint union of C3 smooth simple closed curves. Such tables only exist on
the 2-torus T2. We restrict ourselves to such tables in Sections 6�8 to avoid
technical complications. Billiard tables with corner points are discussed
separately in Section 9.

Let M$=�Q_[&?�2, ?�2] be the standard cross-section of the
billiard flow, T: M$ � M$ the first return map (billiard ball map), and
{(x)>0 the return time (the length of the free path till the next collision),
see details in ref. 5. The coordinates on M$ are denoted by (r, .), where
r # �Q is the arc length parameter and . # [&?�2, ?�2] is the angle of
reflection. The map T preserves the smooth measure d+=c+ cos . dr d.,
where c+ is the normalizing constant. It is known that + is an SRB measure,
the system (T, +) is ergodic, mixing, K-mixing and Bernoulli.(16, 11)

Theorem 6.1. The billiard ball map (T, +) enjoys exponential
decay of correlations.

Discontinuity Curves. Let S0=�Q_[.=\?�2] be the natural
boundary of M$. Put Sn=T nS0 for all n # Z, and Sm, n=�n

i=m Si for
&��m�n��. Each Sn is a finite union of C2-curves whose slope, in
the r, . coordinates, is positive for n�1 and negative for n� &1. The sets
S&n, 0 and S0, n consist of discontinuity curves for T n and T &n, respectively.
The following continuation property is important (see also Section 10): each
endpoint, x0 , of every smooth curve #/S&m, 0 , m�1, lies either on �M$
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or on another smooth curve #$/S&m, 0 that itself does not terminate at x0 .
Hence, each curve # # S&m, 0 can be continued up to �M$ by other curves
in S&m, 0 .

Invariant Cones and Alignment. Identifying the tangent space
at each point with the (r, .)-plane, the derivative DT maps the cone
[r.�0] strictly into itself. We call the DT-image of [r.�0] the unstable
cone Cu. Similarly, DT &1 maps [r.�0] strictly into itself, and C s is
defined accordingly. These two families of cones are DT-invariant in the
sense of Section 2. The tangent vectors to the curves in Sm belong in
unstable cones for m�1 and in stable cones for m�&1, this property is
often referred to as Alignment.

Transversality. The angles between stable and unstable cones are
bounded away from zero. This follows from the fact that the edges of the
cones Cu and C s are uniformly bounded away from the r- and .-axes. In
other words, for any tangent vector v=(dr, d.) in either stable or unstable
cone we have

0<B&1
1 �|d.�dr|�B1<� (6.1)

Here and further on Bi=Bi (T )>0 mean some positive constants.
More precisely, let x=(r, .) # M$ and v=(dr, d.) be a tangent vector

at x. We put

B(x, v)=
1

cos . \d.
dr

+K(r)+ (6.2)

where K(r)>0 is the curvature of the boundary �Q at the point of reflec-
tion, r. Denote by Kmin>0 and Kmax>0 the minimum and maximum of
the curvature of �Q. Also, for the class of billiards discussed here, {(x)�
{min>0. The value of B(x, v) represents the curvature of the orthogonal
cross-section of the bundle of the outgoing velocity vectors specified by the
points (r+= dr, .+= d.), =r0, see refs. 4 and 5.

Put x1=(r1 , .1)=Tx and v1=(dr1 , d.1)=DT(v). It follows from the
mirror equation of geometric optics, see refs. 4 and 5, that

B(x1 , v1)=
2K(r1)
cos .1

+
1

{(x)+B&1(x, v)
(6.3)
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Hence,

d.1

dr1

=K(r1)+cos .1 \{(x)+cos . \d.
dr

+K(r)+
&1

+
&1

(6.4)

This proves (6.1) with B1=max[K&1
min , Kmax+{&1

min]. Note that for billiard
tables with corner points {min=0, and so the upper bound in (6.1) fails, see
also Section 9.

Hyperbolicity. The expansion and contraction of tangent vectors
can be conveniently described in a pseudometric that is loosely called
p-metric.(5, 17) If v=(dr, d.) is a vector in either stable or unstable cone,
then its p-norm is defined by

|v|p=cos . |dr| (6.5)

In this norm, DT is uniformly hyperbolic:

|DT(v)|p�4|v|p \v # Cu, and |DT &1(v)|p�4|v|p \v # C s

(6.6)

with some constant 4>1. More precisely, the expansion factor of unstable
vectors v=(dr, d.) # C u

x is given by ref. 5

|DT(v)|p

|v|p
=1+{(x) B(x, v)=1+

{(x)
cos . \d.

dr
+K(r)+ (6.7)

so we can set 4=1+{min(B&1
1 +Kmin). Clearly, the expansion factor is

mainly determined by cos .:

B&1
2 {min

cos .
�

|DT(v)|p

|v|p
�

B2{(x)
cos .

\v # C u (6.8)

In particular, the derivative DT in the p-metric is unbounded near S0 ,
where cos .r0.

``Homegeneity Strips'' and the Definition of M. The
unboundedness of DT near S0 makes the distorsion control in the sense
of (2.2) particularly difficult for billiards. One has to partition the
neighborhood of S0 into countably many narrow strips parallel to S0 in
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each of which the control is possible. We fix a large k0�1 and for each
k�k0 define ``homogeneity strips''

Ik=[(r, .): ?�2&k&2<.<?�2&(k+1)&2]

and

I&k=[(r, .): &?�2+(k+1)&2<.< &?�2+k&2]

We put

I0=[(r, .): &?�2+k&2
0 <.<?�2&k&2

0 ]

The exact choice of k0 will be made later.
Now we define an open subset M/M$, on which T will satisfy all our

assumptions. We put M= _ Ik . Moreover, it is convenient to consider Ik

as regions in the (r, .) plane with disjoint closures (as if we cut M$ along
the boundaries of Ik and moved the strips Ik apart from each other). The
map T restricted on M has the singularity set 1 :=S&1 _ T &1(�k �Ik).
Since the boundaries of Ik are parallel to S0 , their preimages under T have
tangent vectors in stable cones, so that the above Alignment holds for the
curves in 1, just as for S&1 . It also holds for all the curves in 1 (n), n�1,
which are defined by (2.1). We will denote also by T the restriction of the
original billiard map T on M.

Stable and Unstable Fibers. It is known that stable and
unstable manifolds, or fibers, for the map T on M (in the sense of
Section 2) exist at a.e. point x # M. In ref. 5, they were called ``homo-
geneous fibers.'' The boundedness of the curvature of both stable and
unstable fibers, as well as the absolute continuity (2.3) are standard facts,
see refs. 5 and 17.

The distorsion bound (2.2) requires some extra work. In ref. 5,
Proposition A1.1(d), it was established that the left hand side of (2.2) is
uniformly bounded above. This is a little less than we now require in (2.2).
However, a careful analysis of the argument in ref. 5 reveals that in fact
more was proved there:

log `
n&1

i=0

Ju(T ix)
Ju(T iy)

�const } [dist(T nx, T ny)]a (6.9)

for some a>0, in the notation of (2.2). Since the argument in ref. 5 is
lengthy, we will not repeat it here, besides all the necessary details are
there, in the proof of Proposition A1.1(d) in ref. 5.
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Next we prove the non-branching of unstable fibers. Let a sequence of
LUM's [Wn] have a limit point x, and \(x, �Wn)>= for some =>0. Then
the curves Wn & B=(x) converge in the Hausdorff metric to a LUM of
length 2= through x, see ref. 5. The uniqueness of the LUM W(x) through
x implies the non-branching of unstable fibers.

It is also standard that u-SRB measures on unstable fibers for dispersing
billiards exist and the invariant measure + is SRB measure. It then remains
to verify our main assumption, on the growth of unstable fibers. This
requires some extra work and switching to a higher iterate of T.

7. SMOOTH BILLIARDS WITH FINITE HORIZON

Here we make an additional assumption on Q, that it has ``finite
horizon,'' i.e., the free path between successive collisions is uniformly boun-
ded: {(x)�{max< �. For this subclass of dispersing billiards Theorem 6.1
was actually proved by Young.(17) We will prove it here by the techniques
developed in the previous sections.

Expansion Rates in Euclidean Metric. Despite the convenience
of the p-metric (6.5), we will work in the Euclidean metric |v|=
(dr2+d.2)1�2 for the reasons explained below.

First, due to (6.1) for any stable or unstable vector v

1�
|v| cos .

|v|p
�B3<� (7.1)

with B3=(1+B2
1)1�2. Hence, (6.8) implies

B&1
4

cos .1

�
|DT(v)|

|v|
�

B4

cos .1

\v # Cu (7.2)

with B4=B2 B3 max[{max , {&1
min], here again (r1 , .1)=Tx.

The reason why we prefer the Euclidean metric | } | to the p-metric is
related to the specific mechanism of growth of unstable fibers under T in
the presence of countably many singularity lines in 1. Let an unstable
fibers W be cut into very many, in the worst case countable many, pieces
by the set 1. Then small pieces of W"1 are mapped into the vicinity of S0 ,
where cos . is small. In the p-metric, these pieces will experience strong
growth at the next iteration of T, due to (6.8). This will allow them to
recover in size, as we will show later. Note, however, a time delay: the
recovery occurs one iteration after (!) the cutting. For this technical reason,
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the map T on M in the p-metric has no chance to satisfy the assumption
(2.6). In the Euclidean metric, the growth occurs simultaneously (!) with
cutting, as it follows from (7.2). This makes the verification of (2.6)
possible.

The expansion factors for unstable vectors under T in the Euclidean
metric are not bounded from 1, however. This is one reason why we need
to consider a higher power of T :

Lemma 7.1. There is an m1�1 such that for any m>m1 and any
point x # M

|DT m(v)|�4m&m1 |v| \v # C u, and |DT &m(v)|�4m&m1 |v| \v # C s

where these derivatives exist.

Proof. Combining (7.1), (6.8) and (6.6) yields

|DT m(v)|�|DT m(v)|p�4m&1|DT(v)| p�
4m&1{min |v|p

B2 cos .
�

4m&1{min |v|
B2B3

Hence it is enough to take any m1 such that 4m1&1>B2B3 �{min . The stable
vectors are treated similarly. K

Denote by |W|max the maximal length of LUM's in M.

Accumulation of Singularity Lines. There are two sources of
accumulation of the components of the set 1 that can cut LUM's into
arbitrary many pieces.

First, the set � T &1(�k �Ik) consists of countably many curves
stretching approximately parallel to some curves in S&1 and approaching
them. So, each set T &1Ik , k{0, is a narrow strip with curvilinear boun-
daries. The expansion of unstable fibers in these strips can be estimated by
(7.2). More precisely, let W/T &1Ik be a LUM, for some k{0. Then the
expansion factor, Ju(x), on W satisfies

0<B&1
5 �k&2 |J u(x)|�B5<� \x # W (7.3)

Second, there might be multiple intersections of the curves in S&1 .
Denote by Km the multiplicity of S&m, 0 , i.e., maximal number of smooth
curves in S&m, 0 that intersect or terminate at any one point x # M$. It is
known(4, 17) that Km�Am+B for some constants A, B>0. We fix an m2

such that Am+B+1<4m&m1 for any m�m2 .
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A Higher Iteration of The Map T. It is enough to establish
exponential decay of correlations for the system (T m, +) with any particular
m�1, see Proposition 10.1 in Section 10. We now fix m :=min[m1 , m2]
+1 and let T1 :=T m. Note that S&m, 0 is the set of singularity curves for
the map T1 on M$. The map T1 restricted on M has singularity set 11 :=
1 (m), where 1 (m) is defined in terms of 1 by (2.1).

The map T1 has the same stable and unstable cones and the same
LUM's and LSM's as does T. Thus, the Alignment and Transversality hold
for T1 as well. Lemma 7.1 implies that

|DT1(v)|�41 |v| \v # Cu, and |DT &1
1 (v)|�41 |v| \v # C s

with 41 :=4m&m1>1, so the map T1 is uniformly hyperbolic in the
Euclidean metric. Our choice of m also ensures that

41>Km+1 (7.4)

It remains to verify our main assumption, the one on the growth of
unstable fibers, but before we introduce a handy indexing system.

Indexing System. Let $0>0 and W be a $0 -LUM. If $0 is small
enough, then W crosses at most Km curves of the set S&m , so the set
W"S&m consists of at most Km+1 connected curves, call them W1 , ..., Wp

with p�Km+1. On each of W j the map T1 (as a map on M$) is smooth,
but any Wj 's may be cut into arbitrary many or countably many pieces by
other curves in 11 , which are the preimages of the boundaries of Ik . Let
2/W be a connected component of the set W"11 . It can be uniquely
identified with the (m+1)-tuple (k1 , ..., km ; j) such that 2/Wj and
T i 2/Iki

for 1�i�m. We will then write 2=2(k1 , ..., km ; j). Of course,
some strings (k1 , ..., km ; j) may not correspond to any piece of W, for such
strings 2(k1 , ..., km ; j)=<.

Denote by J u
1(x)=Ju(x) } } } Ju(T m&1x) the expansion factor of the

unstable subspace E u
x under DT1 . Let |2|=m2(2) be the Euclidean length

of a LUM 2. We record two important facts:

(a) For every point x # 2(k1 , ..., km ; j) we have

Ju
1(x)�Lk1, ..., km

:=max {41 , B6 `
ki{0

k2
i =

where B6=(max[B4 , B5])&m. This follows from (7.2) and (7.3).
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(b) For each 2(k1 , ..., km ; j) we have

|2(k1 , ..., km ; j)|�Mk1, ..., km
:=min { |W|, B7 `

ki{0

k&2
i =

where B7=B&1
6 |W|max . This follows from the previous fact.

Next, put

%0 :=2 :
�

k=k0

k&2�4�k0

Growth of Unstable Fibers. Let W be a $0 -LUM and $>0 be
small. Due to the Transversality, the angles between W and the curves of
11 that cross W are uniformly bounded away from zero. For each connec-
ted component 2/W"11 put 20=2 & U$ and 21=int(2"U$), where U$ is
the $-neighborhood of 11 _ �M. Due to the Transversality and Continua-
tion properties, the set 20 consists of two subintervals adjacent to the
endpoints of 2 (they may overlap and cover 2, of course). The set 21 is
either empty or a subinterval of 2. We put W1=�2/W"11

21.
For each 21 the set T1(21 & [rW1, 1<=]) is the union of two subinter-

vals of T1 21 of length = adjacent to the endpoint of T1 21. Using the above
indexing system gives

mW (rW1, 1<=)� :
k1, ..., km, j

2=L&1
k1, ..., km

�2=p[4&1
1 +B6(%0+%2

0+ } } } +%m
0 )]

�2=(Km+1)(4&1
1 +B6 m%0) (7.5)

We now assume that k0 is large enough so that

:0 :=(Km+1)(4&1
1 +B6m%0)<1

and thus get

mW (rW1, 1<=)�min[ |W|, 2:0=]

The first term on the right hand side of (2.6) is equal to

:0 41 min[ |W|, 2=�41]=min[:041 |W|, 2:0=]

Since :041>1, we get

mW (rW1, 1<=)�:0 41 } mW (rW, 0<=�41) (7.6)
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Next, to obtain an open ($0 , 1)-subset V 1
$ of W1, one needs to further

subdivide the intervals 21/W such that |T1 21|>$0 . Each such LUM
T1 21 we divide into s2 equal subintervals of length �$0 , with s2�
|T1 21|�$0 . If |T1 21|<$0 , then we set s2=0 and leave 21 unchanged.
Then union of the preimages under T1 of the above intervals will make V 1

$ .
Now we must estimate the measure of the =-neighborhood of the additional
endpoints of the subintervals of T1 21. This gives

mW (rV 1
$ , 1<=)&mW (rW1, 1<=)� :

2/W"11

2s2= |B9 21|�|T1 21|

� :
2/W"11

2B9= |21|�$0

�2B9=$&1
0 |W|

Here B9=exp(const } |W| a
max) is an upper bound on distorsions on LUM's,

see (6.9). Combining the above bound with (7.6) completes the proof of
(2.6) with ;0=2B9 .

We now prove (2.7). It is enough to consider =<|W|�2, so that the
right hand side of (2.7) equals 2 D0 $&}=. We can put V 0

$=W"V 1
$ . Then

the left hand side of (2.7) does not exceed 2J$=, where J$ is the number of
nonempty connected components of the set V 0

$ , which is at most the num-
ber of connected components of W"11 of length >2$. Hence, clearly
J$� |W|�$�$0 �$. This proves (2.7) with }=1.

Lastly, we prove the inequality (2.8). Again, let 2 be a connected com-
ponent of W"11 and 20, 21 be defined as above, with the set 20 consisting
of two subintervals adjacent to the endpoints of 2. Since the angles
between W and curves in 11 _ �M are bounded away from zero, each of
these subintervals has length between $ and B8$, where B8 depends on the
minimum angle between LUM's and curves in 11 _ �M.

Now, the right hand side of (2.8) equals D0 min[ |W|, 2`$_]. So, it is
enough to show that mW (V 0

$)�B$_ for some B, _>0. We have

mW (V 0
$)� :

2/W"11

min[2B8$, |2|]

� :
k1, ..., km, j

min[2B8$, Mk1, ..., km
]

�const } $+const } �*k1, ..., km
min {$, `

ki{0

k&2
i =
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where �* is taken over m-tuples that contain at least one nonzero index
ki {0. The following lemma, which is proved in Appendix, completes the
proof of (2.8) with _=(2m)&1.

Lemma 7.2. Let $>0 and m�1. Then

:
k1, ..., km�2

min[$, (k1 } } } km)&2]�B(m) } $1�2m

8. SMOOTH BILLIARDS WITHOUT HORIZON

Here we relax the assumption on ``finite horizon,'' i.e., allow arbitrarily
long free runs between consecutive collisions. In particular, this is always
the case when �Q is just one closed curve on T2.

In this case, the singularity set Sm /M$ for each m{0 is a countable
(not finite!) union of smooth curves. These curves accumulate in the
vicinities of a finite number of points |1 , ..., |s # S0 , whose trajectories
only contain grazing (tangent) reflections at the boundary �Q, so that their
velocity vectors never change. The finite set 0=[|1 , ..., |s] is T-invariant.
Moreover, for any open set U#0 there is another open set V#0 such
that TV/U.

Cell Structure of M$. The structure of the singularity curves S&1

near the points |1 , ..., |s is described in refs. 4 and 5 in great detail. We
will need the following facts here:

(a) The curves S&1 partition M$ into a countable number of con-
nected regions, which we call cells. The neighborhood of each point |j # 0
contains infinitely many small cells whose sizes decrease as they approach
|j . Small cells near each |j can be naturally labelled Cj, t with t=1, 2, ...,
see refs. 4 and 5. (b) For each cell Cj, t and every x # Cj, t we have const1 }
t�{(x)�const2 } t. Hence, the expansion factor at x satisfies

B&1
10 t

cos .1

�
|DT(v)|

|v|
�

B10 t
cos .1

\v # Cu (8.1)

where (r1 , .1)=Tx, as in (7.2). This follows from (6.8) and (7.1).

(c) For each small cell Cj, t and every x # Cj, t we have cos .1�
B11 t&1�2, where again (r1 , .1)=Tx. (A similar bound holds for cos ., but
we will not need it.)
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Convention. In all that follows, we only consider sufficiently small
cells, with numbers t�t0 , where t0 is large and will be fixed later. Put
C=�s

j=1 �t�t0
Cj, t . This set is small, and its complement M$"C makes

``most of '' M$. We need not label any cells in M$"C.
Now, we will repeat the arguments of Section 7, working out the

necessary modifications. The bound (7.1) still holds. The bound (7.2) holds
for all x � C, i.e., in the ``main part'' of M$, where {(x) is bounded. For
x # C we have the bound (8.1). Lemma 7.1 still holds, because its proof
only uses the lower bound on {(x).

The analysis of the accumulation of singularity lines has to be sup-
plemented now, since the curves of S&1 additionally accumulate near each
point |j # 0. The bound (7.3) holds for all x # (M$"C) & T &1Ik , k{0,
whereas for each x # Cj, t & T &1Ik , k{0, we have

0<B&1
12 �t&1k&2 |Ju(x)|�B12<� \x # W (8.2)

and for each x # Cj, t"�k{0 T &1Ik we have

0<B&1
12 �t&1 |Ju(x)|�B12<� \x # W (8.3)

These follow from (8.1).
The bound Km�Am+B was proved in ref. 4 without assuming finite

horizon, so it holds now. The choice of the iteration T m does not change,
so we again arrive at (7.4).

Indexing System. This needs to be more elaborate. Let U be a
small neighborhood of 0, and V another neighborhood of 0 such that
T iV/U for all 0�i�m. The set S&m"V consists of a finite number of
smooth curves. Hence, _$0>0 such that any $0 -LUM W/M$"V crosses
at most Km curves of the set S&m . In this case we call W1 , ..., Wp ,
p�Km+1, the connected components of W"S&m . If W/V, then T iW/U
for all 0�i�m, so T iW can only cross the boundaries of some small cells.
In this case we put W1=W. In either case, each connected component 2$
of the set W"S&m can be uniquely identified with the (m+1)-tuple
(l1 , ..., lm ; j) such that 2$/Wj and li , 1�i�m, is defined by T i&1 2$/Cji, li

with some 1� ji�s if T i&1 2$/C, and li=2 otherwise. New, each connected
component 2 of the set W"11 , where 11=1 (m) is defined as in Section 7,
can be uniquely identified with the (2m+1)-tuple (l1 , k1 , ..., lm , km ; j)
where (k1 , ..., km) are defined as in Section 7. We will then write 2=
2(l1 , k1 , ..., lm , km ; j).
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We record three important facts:

(d) For every point x # 2(l1 , k1 , ..., lm , km ; j) we have

J u
1(x)�Ll1, k1, ..., lm, km

:=max {41 , B13 `
li, ki{0

k2
i l i=

This follows from (8.2) and (8.3).

(e) For each 2(l1 , k1 , ..., lm , km ; j) we have

|2(k1 , ..., km ; j)|�Ml1, k1, ..., lm, km
:=min { |W|, B14 `

li, ki{0

k&2
i l &1

i =
(f ) For each ki {0 we have li�/k4

i and for each ki=0 we have
li�/k4

0 , with /=2B2
11 . This follows from the fact (c) above.

We now assume that t0>/k4
0 . Then, in our indexing system, for each

ki=0 we have li=2. Next, put

%1 :=2 :
�

k=k0

:
[/k4]

l=[/k4
0]

k&2l&1

�const } :
�

k=k0

k&2 ln k

�const } k&1
0 ln k0

Growth of Unstable Fibers. We now proceed with the proofs of
(2.6)�(2.8) using the same notation as in Section 7. As in (7.5), we have

mW (rW1, 1<=)� :
l1, k1, ..., lm, km, j

2=L&1
l1, k1, ..., l1, km

�2=p[4&1
1 +B13(%1+%2

1+ } } } +%m
1 )]

We now assume that k0 is large enough so that

:0 :=(Km+1)(4&1
1 +B13m%1)<1

This fixes our choice of k0 , and hence t0 . After that we complete the proof
of (2.6) as in Section 7, word by word.

The proof of (2.7) does not change.
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To prove (2.8) as in Section 7, we note that

mW (V 0
$)� :

l1, k1, ..., lm, km, j

min[2B8$, Ml1, k1, ..., lm, km
]

�const } $+const } �*l1, k1, ..., lm, km
min {$, `

li, ki{0

l &1
i k&2

i =
where �* is taken over 2m-tuples that contain at least one nonzero index
ki {0. The following lemma, which is proved in Appendix, completes the
proof of (2.8) with _=(6m+1)&1.

Lemma 8.1. Let $>0 and m�1. Then

:
k1, ..., km�2

:
[/k4

1]

l1=2

} } } :
[/k4

m]

lm=2

min[$, (l1 } } } lm)&1 (k1 } } } km)&2]�B(m) } $1�(6m+1)

9. DISPERSING BILLIARD TABLES WITH CORNER POINTS

In this section we consider dispersing billiard tables Q/R2. They
necessarily have corner points, i.e., intersections of smooth curves of �Q.
We assume, as usual, (4, 5) that all such intersections are transversal, i.e., the
angle made by the sides of Q at each corner point is positive. By the way,
this is widely believed to be a necessary assumption for exponential decay
of correlation, because otherwise the decay seems to be polynomial.(13)

New Singularity Lines. Let r̂1 , ..., r̂t be the r-cooridanes of the
corner points of �Q. Put V0=[(r, .) # M$: r= r̂1 , ..., r̂t]. It is convenient to
cut M$ along the segments [r= r̂i], 1�i�t, that make V0 and then think
of M$ as a union of disjoint rectangles (each bounded by two S0 segments
and two V0 segments) and cylinders (each bounded by two S0 closed
curves), see refs. 4 and 5. Then S0 _ V0 will be the natural boundary of M$.
We use the notations Vm=T &mV0 and Vm, n in the same way as Sm and
Sm, n , Section 6. Then the singularity set for T m, m�1, is S&m, 0 _ V&m, 0 .
This set has the continuation property, see Section 6. The Alignment holds
as well, i.e., all the tangent vectors to Vm are in unstable cones for m>0
and in the stable cones for m<0.

Denote by Km the multiplicity of S&m, 0 _ V&m, 0 , i.e., the maximal
number of smooth curves of this set that intersect or terminate at any one
point of M$. Unlike the previous sections, it is not known for the present
class of billiards how fast Km grows with m. We have to assume that it does
not grow too fast. Specifically, there is a large enough m such that

Km<4m&m3
0 &1 (9.1)
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where the constants 40>1 and m3 are defined below. Similar bounds are
commonly assumed in the literature.(4, 5, 12, 17) The bound (9.1) is widely
believed to hold for generic billiard tables, (4) even though this is not
known. There will be no more assumptions on the region Q in this section.

A detailed study of billiard tables with corner points was done in
refs. 4 and 5. We will recall the necessary facts.

Corner Series. The new phenomenon here is the existence of series
of two or more consecutive reflections near a corner point. During those
series, the free paths are short, i.e., {(x)r0, and so the expansion of
unstable vectors, even in the p-metric, is weak, due to (6.7). Let us fix a
sufficiently small =>0, and call a series of consecutive reflections a corner
series if they all occur in the =-neighborhood of one corner point. Three
facts make the analysis easier:

(a) The number of reflections in any corner series is uniformly bounded
above (by some m0�1). So, there is a constant {$min>0 such that for each
x # M there is an i # [0, ..., m0&1] such that {(T ix)�{$min .

(b) Each corner series contains at most one grazing reflection, and
that reflection is necessarily the first or the last one in the series. So, there
is a constant c0>0 such that in each corner series T ix=(r i , .i), 0�i�g,
we have cos .i>c0 for all i's, except possibly one, and that exceptional one
is either i=0 or i= g.

(c) The curvature of LUM's, LSM's and all smooth curves in
Sm _ Vm , m # Z, is uniformly bounded above.

We call a corner series T ix, 0�i�g, with no grazing reflections (i.e.,
such that cos .i>c0 for all 0�i�g) a regular one. Corner series with the
first grazing reflection (cos .0<c0) are said to be left-singular and those
with the last grazing reflection (cos .g<c0) right-singular.

``Weaker'' Tranversality. As in previous sections, the angles
between stable and unstable cones are uniformly bounded away from zero,
see refs. 4 and 5 and below. The lower bound in (6.1) still holds. But the
upper bound in (6.1) sometimes fails, and we now describe precisely where
and how this happens. Let T ix=(ri , .i), 0�i�g, be a left-singular corner
series. Consider unstable vectors (dri , d.i) # C u

xi
. Only the vector (dr0 , d.0)

satisfies the upper bound in (6.1). For 1�i�g, we have another bound

B&1
15

ti+cos .0

�
d. i

dri
�

B15

t i+cos .0

(9.2)
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where ti={(x0)+ } } } +{(x i&1). This bound easily follows from the
detailed estimates in ref. 5, Appendix 1 (A1.3). (Alternatively, (9.2) can be
derived from (6.4) by induction on i.) Stable vectors at points T ix,
0�i�g, satisfy the upper bound in (6.1). Similar facts hold for right-
singular series, but now only stable vectors fail to satisfy the upper bound
in (6.1). For regular corner series and for reflections away from corner
points, the bound (6.1) is never broken. Observe that at no point x # M$
can stable and unstable vectors simultaneously violate the upper bound of
(6.1). This is exactly the reason why the angles between stable and unstable
cones are bounded away from zero.

Hyperbolicity. The expansion and contraction in the p-metric
described by (6.7) is no longer uniform, we just have

|DT(v)|p�|v| p \v # Cu, and |DT &1(v)|p�|v|p \v # C s (9.3)

However, we still have the uniform hyperbolicity in the sense of (6.6) when-
ever {(x)>{$min>0, with

4 :=1+{$min (B1+Kmin)>1

In particular, the expansion and contraction is uniform for the map T m0:

|DT m0(v)|p�4m0
0 |v|p \v # Cu, and |DT &m0(v)|p�4m0

0 |v| p \v # C s

(9.4)

with

40 :=41�m0>1

Next, the homogeneity strips Ik and the region M are defines exactly
as in Section 6. The properties of stable and unstable fibers and SRB
measure described in the end of Section 6 are valid without change.

Expansion Rates in Euclidean Metric. Despite certain deterio-
ration of hyperbolicity in terms of the p-metric, it does not get any worse
in terms of the Euclidean metric, as the following lemma shows, cf. (7.2).

Lemma 9.1. Let x=(r, .) # M and Tx=(r1 , .1) # M. Then

B&1
16

cos .1

�
|DT(v)|

|v|
�

B16

cos .1

\v # Cu (9.5)
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Proof. We will prove the lower bound, the proof of the upper bound
is completely similar. (We will only need the lower bound, anyway.)
Denote v=(dr, d.) and DT(v)=(dr1 , d.1). First of all,

|DT(v)|
|v|

=
(dr2

1+d.2
1)1�2

(dr2+d.2)1�2=
(1+(d.1 �dr1)2)1�2

(1+(d.�dr)2)1�2 }
cos .
cos .1

}
|DT(v)| p

|v|p

Next, we use the lower bound in (6.1), which always holds, recall that
B3=(1+B2

1)1�2, and then substitute (6.7):

|DT(v)|
|v|

�
d.1�dr1

B3 } d.�dr
}

cos .
cos .1

}
|DT(v)|p

|v|p

�
d.1�dr1

B3 } d.�dr
}

cos .
cos .1

} \1+
{(x)

cos .
d.
dr +

=
d.1�dr1

B3 cos .1

} \\d.
dr +

&1

} cos .+{(x)+
Now, consider three cases:

Case 1: {(x)>{$min . Clearly, (9.5) holds with B16=B1B3�{$min .
Observe that if {(x)<{$min , then the points x and Tx belong in one

corner series.

Case 2: the corner series containing x and Tx is regular or right-
singular. Then d.�dr�B1 and cos .�c0 , so (9.5) holds with B16=
B2

1B3 �c0 .

Case 3: the points x and Tx belong in a left-singular corner series.
Then we have two subcases:

(3a) x is the first point in that corner series. Then d.�dr�B1 and
d.1 �dr1�B&1

15 ({(x)+cos .)&1 by (9.2). Hence, (9.5) holds with B16=
B1B3 B15 .

(3b) x is not the first point of the corner series, which then starts
at some other point, call it T & jx=(r~ , .~ ), 1� j�m0 . Denote t=
� j

i=1 {(T &ix). Now,

d.1 �dr1�B&1
15 (t+{(x)+cos .~ )&1 and d.�dr�B15(t+cos .~ )&1

due to (9.2), and also cos .�c0 . Now (9.5) follows with B16=B3B2
15�c0 .

We now set B16=max[B1B3 �{$min , B2
1B3 �c0 , B1B3B15 , B3B2

15 �c0]. The
lemma is proved. K
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Next, we prove an analogue of Lemma 7.1.

Lemma 9.2. There is an m3�1 such that for any m>m3 and any
point x # M"S&m, 0 _ V&m, 0

|DT m(v)|�4m&m3
0 |v| \v # Cu

A similar bound holds for stable vectors.

Proof. Let j1=1+min[i�0: {(T ix)�{$min] and j2=1+min[i� j1 :
{(T ix)�{$min]. Note that j1�m0+1 and j2�2m0+2. Note also that the
points T j1x and T j1&1x cannot belong in one corner series, so the vector
DT j1v satisfies the upper bounds in (6.1) and (7.1). Due to (9.3) and (9.4),
we have

|DT m(v)|�|DT m(v)|p�4m& j2&m0
0 |DT j2(v)|p (9.6)

Next, we need the following standard estimate for dispersing billiards:

Sublemma 9.3. Let x=(r, .) # M and v=(dr, d.) # C u
x . Then for

any n�1

|DT n(v)|p

|v|p
�1+

{(x)+ } } } +{(T n&1x)
cos . \d.

dr
+K(r)+

Proof. For all 0�i�n, denote T ix=xi=(ri , .i), {i={(x i) and
Bi=B(xi , DT i (v)), cf. (6.2). It follows from (6.3) that B&1

i �{i&1+B&1
i&1 ,

and so

B&1
i �{0+ } } } +{i&1+B&1

0

Now, due to (6.7),

|DT i+1(v)|p

|DT i (v)|p
=1+{iBi�

{0+ } } } +{i+B&1
0

{0+ } } } +{ i&1+B&1
0

Multiplying this estimate for all i=0, ..., n&1 gives

|DT n(v)|p

|v|p
�

{0+ } } } +{n&1+B&1
0

B&1
0

which proves the sublemma. K
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We now complete the proof of Lemma 9.2. Let T j1x=(rj1
, .j1

). We
subsequently use the sublemma, the lower bound in (6.1), the upper bound
in (7.1) for the vector DT j1(v), and the lower bound in (9.5):

|DT j2(v)|p�
{(T j1x)+ } } } +{(T j2&1x)

B1 cos .j1

|DT j1(v)| p

�
{$min

B1 B3

|DT j1(v)|

�
{$min

B1 B3B j1
16

|v|

Recall that j1 , j2�m0+1. So, it is enough to take any m3 such that
4m3&2m0&1

0 >B1B3 Bm0+1
16 �{$min . Lemma 9.2 is proved. K

Accumulation of Singularity Lines and the Map T1 . As in
Section 7, the boundaries of the regions T &1Ik , k�0, accumulate near some
curves of S&1 . For each LUM W/T &1Ik , k�0, we again have the estimate
(7.3) (with a different value of B5 , though) since it follows from (9.5).

We now fix a sufficiently large m>m3 for which (9.1) holds. Let
T1 :=T m. Then Lemma 9.2 implies that

|DT1(v)|�41 |v| \v # Cu and |DT &1
1 (v)|�41 |v| \v # C s

with 41 :=4m&m3
0 >1. also, (9.1) implies

41>Km+1

Note also that the set S&m, 0 _ V&m, 0 is a finite union of smooth compact
curves.

We are now in exactly the same position as in Section 7. So, the indexing
system used in that section and the proofs of (2.6)�(2.7) go through
without change.

The proof of (2.8) requires a correction, though, because now some
curves in �M (specifically, the segments of V0) are not uniformly transver-
sal to unstable fibers. As a result, for some LUM's W the set U$ may cover
on W an interval longer than const } $, unlike what we had in Section 7.

To overcome this problem, we invoke a useful estimate, proved in
ref. 4, Lemma 2.7: for any LUM W and any point x=(r, .) # W the
tangent vector (dr, d.) to W satisfies

d.
dr

�
B17

|r&r0 |1�2
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where (r0 , .0) is the endpoint of W closets to x. Hence, |.&.0 |�
2B17 |r&r0 |1�2, so that the $-neighborhood of V0 can only cover an interval
on W of length �B18 $1�2. We now finish the proof of (2.8) in a manner
similar to that of Section 7:

mW (V 0
$)� :

2/W"11

min[2B18$1�2, |2|]

� :
k1, ..., km, j

min[2B18 $1�2, Mk1, ..., km
]

�const } $1�2+const } :*
k1, ..., km

min {$1�2, `
ki{0

k&2
i =

where �* is taken over m-tuples that contain at least one nonzero index
ki {0. The bound (2.8) now follows from Lemma 7.2, but with _=(4m)&1

rather than _=(2m)&1.

10. FINAL REMARKS AND DISCUSSION

Theorem 2.1 obviously holds for functions that are only Ho� lder con-
tinuous on the connected components of the set M"1 (m) for some m�1.
Moreover, it can be naturally extended to a wider class of the so called
piecewise Ho� lder continuous functions, as defined in refs. 5 and 7.

In applications, it is often enough to prove Theorem 2.1 for any
power, T m, of the map T:

Proposition 10.1. Let m�2. Assume that the map T l is Ho� lder
continuous faith some exponent 'l>0) on every connected component of
M"1 (l ) for each l=1, ..., m. If T m enjoys exponential decay of correlations,
then so does T.

Proof. Let n�1, and n=km+l with some 0�l�m&1. Let
f, g # H' . Then

|
M

( f b T n) g d+=|
M

( f b T n& f b T km) g d++|
M

( f b T km) g d+

=|
M

(hl b T km) g d++|
M

( f b T km) g d+ (10.1)

where hl= f b T l& f. The function hl is Ho� lder continuous (with exponent
'l '>0) on each connected component of M"1 (l ). Since l takes a finite
number of values, both integrals in (10.1) are exponentially small in k. K
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Lastly, we discuss the assumptions of our main Theorem 2.1.
First, the assumption on the existence of an ergodic SRB measure +

does not seem to be necessary. Indeed, it can be often proved under various
general assumptions similar to ours, see refs. 14, 15, and 17, and the proof
is normally easier than that of statistical properties of +. We intentionally
left out this problem in the paper, in order to focus on the EDC and CLT.
Note, however, that the other assumptions in Section 2 do not logically
imply the existence of SRB measures, as the following example shows.

Example. Let R=[(x, y): 0<x<1, y>1] be an open strip in R2,
and let M$=[(s, t): 0�s�1, 0�t�1] with the identification of s=0 and
s=1 be a closed cylinder. Let T1 : R � R be given by (x, y) �
(x�3+1�3, 2y&1) and T2 : R � M$ be defined by s= y (mod 1) and
t=e&y+x(e&y&1&e&y). Then M=T2(R) is an open subset of M$, and
the map T=T2 b T1 b T &1

2 takes M to M. It satisfies all the assumptions of
Section 2 (other than the existence of an SRB measure), with 1=<, but
has no SRB measure.

We now comment on our main assumptions (2.6)�(2.8). They are
proved in ref. 8 in the case where 1 _ �M was a finite union of smooth
compact hypersurfaces, and T had one-sided derivatives on 1 _ �M.

Assume now that 1 _ �M consists of a countable number of smooth
compact hypersurfaces. Three additional assumptions, all valid for billiard
systems, may significantly simplify the proof of (2.6)�(2.8):

Bounded Curvature. If the sectional curvature of the smooth
components of 1 _ �M is uniformly bounded, then one can approximate
them by hyperplanes (since they are almost flat on the small scale of our
$0 -LUM's).

Continuation. Assume that each boundary point, x0 , of every
smooth component #/1 lies either on �M or on another smooth compo-
nent #$/1 that itself does not terminate at x0 . Also, assume that for each
point x # M there is a neighborhood V(x) that intersect only a finite num-
ber of smooth components of 1 (i.e., infinitely many components of 1 can
only accumulate near �M).

Transversality. The tangent planes to 1 _ �M and unstable cones
are uniformly transversal, i.e., the angles between them (properly defined in
ref. 8) are bounded away from zero.
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The above properties imply the following. Let W be a LUM, and
x # W & U$ . Then x lies in a (B$)-neighborhood of the set (W & 1 ) _ �W.
Here the constant B>0 is determined by the minimum angle between the
tangent planes to 1 _ �M and unstable cones. This property allows to
work with the (B$)-neighborhood of the intersection W & 1 when proving
(2.6)�(2.8). This is exactly what we did in Sections 7�8, as well as in ref. 8.

Lastly, in the case dim Eu=du=1, the assumption (2.7) always holds,
and our proof in Section 7 applies.

APPENDIX

Here we provide the proofs of the technical estimates in Lemmas 7.2
and 8.1. We denote by Volm the m-dimensional volume in Rm.

Sublemma A.1. Let A>1 and m=1, 2, .... Consider the region
Rm(A)/Rm defined by

Rm(A)=[x1 , ..., xm�1, x1 } } } xm<A]

Then Volm Rm(A)�A(ln A)m.

Proof. The proof goes by induction on m. The case m=1 is trivial.
For m�1, we have

Volm Rm(A)=|
A

1
dxm Volm&1 Rm&1(A�xm)

�|
A

1
dxm Ax&1

m (ln A)m&1=A(ln A)m

Sublemma A.2. Let A, B>1 and m�1, k�2. Consider the
region R2m(A, B, k)/R2m defined by

R2m(A, B, k)=[x1 , y1 , ..., xm , ym

�1, x1 } } } xm<A, (x1 } } } xm) } ( y1 } } } ym)k<B]

Then Vol2m R2m(A, B, k)�4A1&1�kB1�k(ln A)m (ln B)m.
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Proof. We have

Vol2m R2m(A, B, k)=|
Rm(A)

dx1 } } } dxm Volm Rm \_ B
x1 } } } xm&

1�k

+
�|

Rm(A)
dx1 } } } dxm _ B

x1 } } } xm&
1�k

(ln B1�k)m

�B1�k(ln B)m |
Rm&1(A)

dx1 } } } dxm&1

(x1 } } } xm&1)1�k |
A�x1 } } } xm&1

1

dxm

x1�k
m

�2A&1�kB1�k(ln B)m |
Rm&1(A)

A dx1 } } } dxm&1

x1 } } } xm&1

=2A&1�kB1�k(ln B)m [Volm Rm(A)+Volm&1 Rm&1(A)]

and then use the previous sublemma. K

Proof of Lemma 7.2. Let Z$ /Z/Zm be the subsets defined by
Z=[k1 , ..., km�2] and

Z$=[k1 , ..., km�2, (k1 } } } km)2�$&1]

We estimate the cardinality |Z$ | from above. An m-cube with side 1 cen-
tered at any point Q # Z$ lies wholly in the region Rm(C $&1�2) with, say,
C=2m. Therefore,

|Z$ |�Volm Rm(C $&1�2)�const } $&1�2(ln $&1�2)m

Next, for any point (k1 , ..., km) # Z"Z$ there is a k i such that
ki�$&1�2m. Let K$=[$&1�2m]. Then

:
Z"Z$

(k1 } } } km)&2� :
m

i=1

:
Z & [ki�K$]

(k1 } } } km)&2

�const(m) } K &1
$ �const(m) } $1�2m

Lemma 7.2 is proved. K

Proof of Lemma 8.1. Let Z$$ /Z$/Z2m be the subsets defined by

Z$=[l1 , k1 , ..., lm , km�2] & [l1�/k4
1 , ..., lm�/k4

m]

and

Z$$=[(l1 , k1 , ..., lm , km) # Z$: (l1 } } } lm) } (k1 } } } km)2�$&1]

554 Chernov



We estimate the cardinality |Z$$ | from above. Observe first that l1 } } } lm�
/m�3$&2�3 in Z$$ . Hence, a cube with side 1 centered at any point Q # Z$$ lies
wholly in the region R2m(C1$&2�3, C2 $&1, 2) with, say, C1=2m/m�3 and
C2=23m. Therefore,

|Z$$ |�Vol2m R2m(C1 $&2�3, C2 $&1, 2)�const } $&5�6(ln $&1)2m

Next, for any point (l1 , k1 , ..., lm , km) # Z$"Z$$ we have /m(k1 } } } km)6

�$&1, so there is a ki such that ki�/&1�6$&1�6m. Let K$$=[/&1�6$&1�6m].
Then

:
Z$"Z$$

(l1 } } } lm)&1 (k1 } } } km)&2� :
m

i=1

:
Z$ & [ki�K$$]

(l1 } } } lm)&1 (k1 } } } km)&2

�const(m) } K &1
$ ln K$

�const(m) } $1�(6m+1)

Lemma 8.1 is proved. K
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